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Abstract—In molecular communication (MC) systems, the ex-
pected number of molecules observed at the receiver over time
after the instantaneous release of molecules by the transmitter
is referred to as the channel impulse response (CIR). Knowledge
of the CIR is needed for the design of detection and equalization
schemes. In this work, we present a training-based CIR estimation
framework for MC systems which aims at estimating the CIR
based on the observed number of molecules at the receiver due
to emission of a sequence of known numbers of molecules by the
transmitter. In particular, we derive maximum likelihood (ML) and
least sum of square errors (LSSE) estimators. We also study the
Cramer Rao (CR) lower bound and training sequence design for
the considered system. Simulation results confirm the analysis and
compare the performance of the proposed estimation techniques
with the CR lower bound.

I. STATE OF ART

The design of any communication system crucially depends
on the characteristics of the channel under consideration. In MC
systems, the impact of the channel on the number of observed
molecules can be captured by the channel impulse response
(CIR) which is defined as the expected number of molecules
counted at the receiver at time t after the instantaneous release
of a known number of molecules by the transmitter at time
t = 0. The CIR, denoted by c̄(t), can be used as the basis
for the design of equalization and detection schemes for MC
systems. In most existing works on MC, the CIR is assumed
to be perfectly known for receiver design [1], [2]. In practice,
the CIR has to be estimated. One widely employed approach
in the literature for determining the CIR is as follows [3]

c̄(t) =

∫∫∫
a∈V rec

C̄(a, t)daxdaydaz, (1)

where V rec is the receiver volume and C̄(a, t) is the av-
erage concentration of the molecules at a given coordinate
a = [ax, ay, az] and at time t after release by the transmitter.
However, this approach may not be applicable in many practical
scenarios. First, the CIR can be obtained based on (1) only
for the special case of a fully transparent receiver where
it is assumed that the molecules move through the receiver
as if it was not present in the environment. However, for
general receivers, the relationship between the concentration
C̄(a, t) and the number of observed molecules c̄(t) may not
be as straightforward. Second, solving the differential equation
associated with Fick’s second law to find C̄(a, t) is possible
only for simple and idealistic environments. Finally, even if
an expression for C̄(a, t) can be obtained for a particular MC
system, it will be a function of several channel parameters such
as the distance between the transmitter and the receiver and
the diffusion coefficient. However, in practice, these parameters
may not be known a priori and also have to be estimated [4].
This complicates finding the CIR based on C̄(a, t).

II. MAIN IDEA OF PROPOSED CIR ACQUISITION

Fortunately, for most communication problems, including
equalization and detection, only the expected number of
molecules that the receiver observes at the sampling times
is needed [1], [2]. Therefore, knowledge of how the aver-
age concentration is related to the channel parameters is not
required, and hence, the difficulties associated with deriving
C̄(a, t) can be avoided by directly estimating the CIR. In this
work, we develop a training-based CIR estimation framework
which enables the acquisition of the CIR based on the observed
number of molecules at the receiver due to emission of a
sequence of known numbers of molecules by the transmitter.
To the best of the authors’ knowledge, this problem has not
been studied in the MC literature, yet.

In contrast to MC, for conventional wireless communication,
there is a rich literature on channel estimation, mainly for linear
channel models and impairment by additive white Gaussian
noise (AWGN), see [5], and the references therein. Channel
estimation was also studied for non-linear and/or non-AWGN
channels especially in optical communication. For example, for
the photon-counting receiver, a linear time-invariant channel
model with Poisson noise was considered in [6] and a non-
linear channel model with Poisson noise was investigated in
[7]. However, the MC channel model considered in this poster
is neither linear nor impaired by AWGN and is also different
from that in [7]. Therefore, the results known from conventional
wireless communication are not directly applicable to MC.

III. KEY RESULTS

For the statement of the results, we use the following defini-
tions and notations: Due to the memory of the MC channel,
inter-symbol interference (ISI) occurs [1]. Here, we assume
a MC channel with L memory taps where c̄ and ˆ̄c denote
the actual and estimated CIR vectors, respectively. Moreover,
let K denote the adopted training sequence length. In order
to compare the performances of the considered estimators
quantitatively, we define the normalized mean and variance of
the estimation error e = ˆ̄c− c̄ as

Meane =
‖E {e}‖2

‖E {c̄} ‖2
and Vare =

E
{
‖e‖2

}
− ‖E {e} ‖2

‖E {c̄} ‖2
, (2)

respectively, where E{·} denotes expectation and ‖ · ‖ denotes
the norm of a vector.

Result 1: The maximum likelihood (ML) and least sum of
square errors (LSSE) CIR estimators for the considered MC
system are biased in general. However, it can be shown that
both the ML and LSSE estimators are asymptotically unbiased.
The asymptotic unbiasedness of the proposed estimators is
numerically verified in Fig. 11 where the normalized mean of

1The detailed description of the parameters used for the simulation results is
not provided here due to space constraints.
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Fig. 1. Normalized estimation error mean, Meane, in dB vs. the training
sequence length, K, for L ∈ {1, 3, 5}.
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Fig. 2. Normalized estimation error, Vare, in dB vs. the training sequence
length, K, for L ∈ {1, 3, 5}.

the estimation error, Meane, in dB is plotted vs. the training
sequence length, K, for L ∈ {1, 3, 5}. Additionally, from Fig. 1,
we observe that the error mean increases as the number of
channel taps increases.

Result 2: The CR bound is a lower bound on the variance of
any unbiased estimator of a deterministic parameter. However,
the ML and LSSE estimators are biased in general. Hence,
the error variances of the ML and LSSE estimates may fall
below the CR bound. However, as K →∞, the ML and LSSE
estimators become asymptotically unbiased, cf. Result 1, and
the CR bound becomes a valid lower bound. To show this, in
Fig. 2, we plot the normalized estimation error variance, Vare,
in dB vs. the training sequence length, K, for L ∈ {1, 3, 5}.
For large K when the CR bound is valid, the error variance of
the ML estimator coincides with the CR bound and the error
variance of the LSSE estimator is very close to the CR bound.
This reveals the effectiveness of the proposed estimators.

Result 3: The LSSE estimator employs a linear filter to
compute c̄ whereas for the ML estimator, solving a system of
nonlinear equations is required. We note that since the training
sequence is fixed, the linear LSSE filter can be calculated offline
and then be used for online CIR estimation. Therefore, the
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Fig. 3. Normalized LSSE estimation error, Vare, in dB vs. the training
sequence length, K, for L ∈ {1, 2, 3, 5}.

calculation of ˆ̄c for the LSSE estimator is considerably less
computationally complex than the computation of ˆ̄c for the ML
estimator. Moreover, the results in Fig. 2 suggest that the simple
LSSE estimator provides a favorable complexity-performance
tradeoff for CIR estimation in the MC system.

Result 4: We present two different training sequence designs
for CIR estimation in MC systems: i) An optimal training
sequence design which minimizes an upper bound on the
average estimation error for the LSSE estimator, and ii) a
suboptimal ISI-free training sequence where the transmitter
emits molecules only once every L symbol intervals in order
to avoid ISI during estimation. The results are given in Fig. 3
where we show the normalized LSSE estimation error, Vare,
in dB vs. the training sequence length, K, for L ∈ {1, 2, 3, 5}.
We observe from Fig. 3 that the performance of the ISI-free
sequence coincides with that of the optimal sequence for all
sequence lengths when L = 1, and for L > 1, the difference
between the error variances of the ISI-free sequence and the
optimal sequence increases as L increases. This result suggests
that for MC channels with small numbers of taps, a simple
ISI-free training sequence is a suitable option.
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